N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist

نویسندگان

  • B Johansson
  • M P Wymann
  • K Holmgren-Peterson
  • K E Magnusson
چکیده

Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc-FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle-Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl-phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist-induced receptor clustering was less apparent after dhcB treatment. To summarize, this work shows that activated N-formyl peptide receptors aggregate and immobilize in the plane of the neutrophil plasma membrane before internalization, a process that is affected, but not significantly reversed, by cytochalasin. The results are consistent with a model where arrested receptors are associated mainly with a cytochalasin-insensitive pool of cytoskeletal elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton in human neutrophils.

The cytoskeleton and/or membrane skeleton has been implicated in the regulation of N-formyl peptide receptors. The coupling of these chemotactic receptors to the membrane skeleton was investigated in plasma membranes from unstimulated and desensitized human neutrophils using the photoreactive agonist N-formyl-met-leu-phe-lys-N epsilon-[125I]2(p-azidosalicylamido)ethyl-1,3'- dithiopropionate (fM...

متن کامل

Chemotactic deactivation of human neutrophils: protective influence of phenylbutazone.

The antiinflammatory drug, phenylbutazone (PBZ), has been studied in terms of its influence on chemotactic deactivation of human neutrophils. When PBZ was present during the time of preincubation of cells with N-formyl-methionyl-phenylalanine (F-Met-Phe), loss of subsequent spontaneous mobility and chemotactic responsivity to F-Met-Phe did not occur. The action of PBZ to protect neutrophils fro...

متن کامل

Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl-methionyl-leucyl-phenylalanine.

Purified human peripheral blood neutrophils were disrupted by nitrogen cavitation or sonication and fractionated on sucrose density gradients in order to separate the plasma membranes and granule fractions. Quantitatively, the fractions containing the specific granules by marker enzyme/protein enrichment contained the most tritiated N-formyl-methionyl-leucyl-phenylalanine (fmet-leu-[3H]phe)-bin...

متن کامل

The interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton is energy-dependent.

Desensitization of N-formyl peptide chemoattractant receptors (FPR) in human neutrophils is thought to be achieved by lateral segregation of receptors and G proteins within the plane of the plasma membrane resulting in an interruption of the signalling cascade. Direct coupling of FPR to membrane skeletal actin appears to be the basis of this process; however, the molecular mechanism is unknown....

متن کامل

Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins

Subcellular fractions were prepared from human neutrophils desensitized at 15 degrees C with stimulatory doses of the photoaffinity derivative F-Met-Leu-Phe-N epsilon-(2-(rho-azido[125I]salicylamido)ethyl-1,3'- dithio-propionyl)-Lys. The covalently labeled receptors were found in a membrane fraction of higher density than those from cells preexposed to ligand at 4 degrees C but not desensitized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 121  شماره 

صفحات  -

تاریخ انتشار 1993